

AGF

Puits thermométriques forés à bride

Caractéristiques

- Acier inoxydable
- Max. 500 °C
- Max. 400 mm

Applications

- Pétrole & Gaz / Produits chimiques
- Eau potable et Eaux usées
- Energie
- Ingénierie

Données techniques

Pression maxi : (1) selon les dimensions du puits

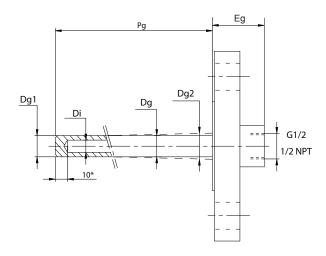
thermométrique

Epaisseur mini de la paroi : 3 mm

⁽¹⁾Les valeurs admissibles en service dépendent :

- du fluide process

Ressuage des soudures


- des pressions et températures de service
- du débit
- du type du puits thermométrique et des dimensions

Options	
Puits thermométrique conique, préciser Dg1 et Dg2	Radiographie des soudures
Soudure pleine pénétration	Test hydraulique interne
Matière forgée	Test hydraulique externe

Dimensions (mm) - Types de montage

Références de commande des faces de brides

Type de face	Schéma	ANSI B16-5	Codes	EN 1759-1	Codes	EN 1092-1	Codes
Face plate	Face plate	Α	Туре А	Α	Type A	Α	
	Ra = 3,26,3 µm		Ra = 3,26,3 µm		Ra = 3,26,3 µm		
Face surélevée	Face surélevée (1,6) (3) Face surélevée (6,4) (4)	G R	Type B (1.6) (3) Type B (6.4) (4)	G R	Type B1	В	
	Ra = 3,26,3 µm		Ra = 3,26,3 µm		Ra = 3,212,5 µm		
Face à emboîtement double mâle	Large (1) Etroit (1)	H I	Type CL (1) Type CS (1)	H	Туре С	С	
	Ra = 0,83,2 µm		Ra = 0,83,2 μm		Ra = 0,83,2 μm		
Face à emboîtement double femelle	Large Etroit	K L	Type DL Type DS	K L	Type D	D	
	Ra = 0,83,2 µm		Ra = 0,83,2 µm		Ra = 0,83,2 μm		
Face à emboîtement simple mâle	Large Etroit (2)	M N	Type E	М	Type E	Е	
	Ra = 3,26,3 µm		Ra = 3,26,3 µm		Ra = 3,212,5 µm		
Face à emboîtement simple femelle	Large Etroit (2)	0 P	Type FC	0	Type F	F	
	Ra = 3,26,3 µm		Ra = 3,26,3 µm		Ra = 3,212,5 µm		
Face pour joint annulaire		Face pour joint annulaire	Q	Type J	Q	N/A	
		Ra = 0,41,6 µm		Ra = 0,41,6 µm			

⁽¹⁾ Non applicable pour 1"1/4 et 1"1/2 (2) Applicable seulement pour 4" (3) Class 150 et 300 (4) Class 600, 900, 1500, 2500

Codifications AGF AGF XXX <u>Modèle</u> Design de la tige Puits thermométriques forés avec bride AGF Ρ Droit Avec rétreint S Conique Type face bride Longueur plongeur Pg voir tableau en page 2 (codes) 100 100 mm Extension (Eg) 150 mm 150 60 mm 0 200 200 mm 100 mm 1 250 mm 250 Autre 300 300 mm <u>Matière</u> 350 350 mm 2 P Acier inoxydable 1.4404 400 400 mm Acier inoxydable Duplex 1.4462 XXX Autre A350 LF2 R Autre Diamètre extérieur Dg (1) PN / class 13 mm G EN 1092-1 Н 14 mm 10 С 15 mm 16 D Κ 16 mm 25 17,5 mm 40 G M 18 mm 100 Ν 19 mm ANSI B16-5 / EN 1759-1 Ρ 20 mm 150 Q 21 mm 2 300 R 22 mm 600 Τ 23 mm 900 24 mm 1500 5 25 mm 6 W 2500 26 mm 27 mm <u>DN</u> 28 mm EN 1092-1 2 29 mm 15 C D E Х Autre 20 Diamètre intérieur Di (1) 25 7 mm F 32 8 mm G H 2 40 3 4 5 50 9 mm 10 mm J K 65 11 mm 80 6 12 mm 100 L 13 mm ANSI B16-5 / EN 1759-1 8 14 mm 2 1/2" (DN 15) 9 16 mm 3/4" (DN 20) Autre 1" (DN 25) 1" 1/4 (DN 32) 4 5 6 1" 1/2 (DN 40) 2" (DN 50) 7 8 2" 1/2 (DN 65) 9 3" (DN 80) 4" (DN 100) ٧ Raccord côté instrument G 1/2" 1/2 NPT Ν Autre

⁽¹⁾ épaisseur minimum de la paroi 3 mm